SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY							
DEPARTMENT OF CIVIL ENGINEERING							
Class Test – I	Session- 2020	Month- Jan-Feb					
Sem- 4th	Subject- Fluid Machines						
Code -320452(20)	Time Allowed: Two Hours	Max Marks: 40					
Note: - Que 1(a) and 2(a)	is compulsory. Attempt any two ques	from 1(b).(c).(d) and two from					

Note: - Que 1(a) and 2(a) is compulsory. Attempt any two ques from 1(b),(c),(d) and two from 2(b),(c),(d).

Q. No	Questions	Marks	Levels of Bloom's taxonomy	со
	Unit – I			
1.A	Prove that the draft-tube has negative pressure head at at inlet.	4	R	CO6
1.B	The three jet Pelton turbine is required to generate 10000 KW under a head of 400 m. The blade angle at outlet is 15° and the reduction in relative velocity while passing over a blade is 5%. If overall efficiency of wheel is 80%, $Cv = 0.98$ and speed ratio = 0.46, then find (i) the diameter of jet (ii) total flow in m ³ /s (iii) the force exerted by a jet on buckets.	8	R,A	CO6
1.C	An inward flow reaction turbine has external and internal diameters as 1.0 m and 0.6 m respectively. The hydraulic efficiency of turbine is 90% when the head on the turbine is 36 m. The velocity of flow at outlet is 2.5 m/s and discharge at outlet is radial. If the vane angle at outlet is 15° and width of the wheel is 100 mm at inlet and outlet,determine (i) the guide blade angle (ii) speed of turbine (iii) vane angle of the runner at inlet (iv) volume flow rate of turbine (v) power developed.	8	R,A	CO6
1.D	Define specific speed. Derive the formula for specific speed in case of turbine and pump. Write significance of specific speed.	8	R,U	CO6

	Unit-I			
2.A	A turbine is to operate under a head of 25m at 200 rpm. The discharge is 9 cumec. If efficiency is 90%, determine the performance of turbine under a head of 20m.	4	R,A	CO6
2.B	Write short notes on (i) cavitation (ii) priming of pump (iii) hydraulic efficiency of turbine (iv) draft-tube	8	U,R	CO6
2.C	Find the power required to drive the centrifugal pump which deliver $0.04m^3$ /s of water to a height of 20 m through a 15 cm diameter pipe and 100 m long. The overall efficiency of pump is 70% and coefficient of friction 'f' = 0.15 in the formula $h_f = 4fLV^2/2gd$.	8	R,A	CO6
2.D	The diameter of a centrifugal pump, which is discharging $0.03m^3/s$ of water against a total head of 20 m is 0.04 m. The pump is running at 1500 rpm. Find head, discharge and ratio of power of a geometrically similar pump of diameter 0.25 m when it is running at 3000 rpm.	8	R,A	CO6

Shri Shankaracharya Institute of Professional Management & Technology Department of Civil Engineering

Class Test – I Session: Jan – Jun 2020 Month – February

Semester – 4th Subject – Building Construction, Code – 320455 (20)

Time Allowed: 2 hrs Max Marks: 40

Note: - In Part I & II, Question A is compulsory and attempt any two from B, C & D.

Q. No.	Questions	Marks	Levels of Bloom's taxonomy	COs
	Part- I			
(a)	(a) Enumerate the types of foundation.(b) Define shallow foundation.	[4]	Understand	CO1
(b)	 Explain the following terms: (1)Bearing Capacity (2)Gross Pressure Intensity (3)Ultimate Bearing Capacity (4)Safe Bearing Capacity (5)Factor of Safety (6)Relationship between S.B.C.,U.B.C and F.O.S. (7)Allowable bearing Pressure (8)Differential settlement 	[8]	Understand	CO1
(c)	Write short notes on: (i)Alluvial and Residual soils (ii)Underreamed Piles	[8]	Apply	CO1
(d)	Discuss are the causes of failure of foundation? What remedial measures would you adopt?	[8]	Apply	CO1
	Part- II			beelees
(a)	Describe the general principles to be observed in stone masonry construction.	[4]	Apply	CO2
(b)	Explain the technical terms used in stone masonry. Or Explain some important terms used in brick masonry.	[8]	Remember	CO2
(c)	Discuss various types of bonds used in brick masonry.	[8]	Apply	CO2
	Define Partition wall. List out various types of partition walls. Explain with sketches any one type of partition walls.	[8]	Understand	CO2

Shri Shankaracharya Institute of Professional Management & Technology Department of Civil Engineering

Class Test - I Session: Jan - June, 2020 Month - February

Semester – 4th Subject – CED, Code – 320454 (20)

Time Allowed: 2 hrs Max Marks: 40

Note:- Attempt all questions

SSIPMT

Q. No.	Questions	Marks	Levels of Bloom's taxonomy	COs
	Part- I			
(1)	Define the term (a) Aspect and prospect (b) Roominess (c) Grouping and Circulation (d) Privacy (e) Sanitation and Elegance	[10]	Understand	CO1
(2)	Describe Building bye's laws for residential Building. OR Explain basic requirement of a buildings and good site selection of residential building.	[10]	Understand	CO1
	Part- II			
(1)	Draw double line plan for residential building with proper scale. OR Draw single line plan for Primary health centre with proper scale	[20]	Analyze	CO2, CO4,

SSIPMT RAIPUR Class Test – I Session: Jan – June, 2020 Month – February

Semester – 4th Subject – CED, Code – 320454 (20)

Time Allowed: 2 hrs Max Marks: 40

Note:- Attempt all questions

Q.	Questions	Marks	Levels of Bloom's taxonomy	COs
	Part- I			
(1)	Define the term (a) Aspect and prospect (b) Roominess (c) Grouping and Circulation (d) Privacy (e) Sanitation and Elegance	[10]	Understand	CO1
(2)	Describe Building bye's laws for residential Building. OR Explain basic requirement of a buildings and good site selection of residential building.	[10]	Understand	CO1
	Part- II			
(1)	Draw double line plan for residential building with proper scale. OR Draw single line plan for Primary health centre with proper scale	[20]	Analyze	CO2, CO4,

Shri Shankaracharya Institute of Professional Management & Technology **Department of Civil Engineering** Class Test – I Session: Jan – July, 2020

SIPMT

Semester – 4th Subject – SURVEY-II, Code – 320453 (20) Time Allowed: 2 hrs Max Marks: 40

Note- Solve each unit for 20 marks

Q. No.	THOLE-	50176 64		20 marks.	Questions				Marks	Bloom's taxonomy	COs
						Part- 1	[
(1)	Define ta	cheomet	ry. What are	the various	methods en	nployed in	the tachc	ometric survey?	[4]	Understand	CO3
	Determine the gradient from a point 'A' to a point 'B' from the following observations made with a tacheometer fitted with an anallatic lens. The constant of the instrument was 100 and the staff was held vertically.										
(2)	Inst. Stn.	Staff at	Bearing	Vertical angle	Staff R	eadings	4	. *	[8]	Apply	CO3
					Bottom	Centre	Тор				
	Р	Α	134°	+10°32'	1.360	1.915	2.470	e.			
-		В	224°	+5°6'	1.065	1.885	2.705				
(3)	A tachom observati	A tachometer is set up at an intermediate point on a traverse course PQ and the following observation were made on a vertically held stay.StaffVerticalStaff interceptAxial hair reading (m)P+ 8° 36°2.3502.105Q+ 6° 6°2.0551.895The instrument is fitted with an anallactic lens the multiplying constant = 100. Compute the						[8]	Apply	CO3	
(4)	Derive th	e formul	la for horizoi	ntal distance	and vertica	l distance i	in a tache	eometric	[8]	Apply	CO3
	surveying	g with sta	aff vertical, s	sight inclined	1?	Part_ I	T		<u> </u>	1	
(1)	(a) Exp (b) Enl	olain law list the ge	s of accident eneral princi	al errors ple of least s	quares with	brief expl	anation		[4]	Understand	CO2
(2)	The following round of angles was observed from central station to the surrounding stations of a triangulation survey: $A = 93^{\circ}43'22"$ wt 3 $B = 74^{\circ}32'39"$ wt 2 $C = 101^{\circ}13'44"$ wt 2							[8]	Apply	CO2	
	In addition, one angle (A+B) was measured separately as combined angle with a mean value of 168°16'06" wt. 2. Determine the most probable values of the angles A.B.C and D.										
(3)	A surveyor carried out leveling operations of a closed circuit ABCDA starting from A and made the following observations. B was 8.164 m above A, wt 2 C was 6.284 m above B, wt 2 D was 5.626 m above C, wt 3 D was 19.964 m above A, wt 3 Determine the probable heights of B. C and D above A?								[8]	Apply	CO2
(4)	Define: 1. Weig 2.Most 3. Norn 4. Obso 5. Princ	tht of an probable nal equat erved val	observation value ion lue of quantification	ty					[8]	Understand	

Shri Shankaracharya Institute of Professional Management & Technology Department of Civil Engineering

Class Test – I Section – A+B Session: July – Dec, 2019 Month – February Semester – 4th Subject – Transportation Engineering – I Code – 320456(20) Time Allowed: 2 hrs Max Marks: 40

Note: - In Unit I & II, Question A is compulsory and attempt any two from B, C & D.

Q. No.	Questions	Marks	Levels of Bloom's taxonomy	CO's
	Unit – I			
Α.	Explain PIEV theory with neat sketch.	[4]	Understand	1
СВ.	 Calculating the stopping site distance on a highway at a descending gradient of 2% for a design speed of 80 kmph. Assume other data as per IRC recommendation. The speed of overtaking and overtaken vehicles are 70 and 40 kmph, respectively on a two way traffic road. If the acceleration of overtaking vehicle is 0.99 m/sec² Calculate safe overtaking sight distance Mention the minimum length of overtaking zone Draw a neat sketch of the overtaking zone and show the position of the sign posts. 	[8]	Analyze	1
C.	Drive the equation of superelevation and design the rate of superelevation for a horizontal highway curve of radius 500 m and speed 100 kmph	[8]	Create	1
D.	Explain the mechanical and psychological widening of pavement and calculate the extra widening required for pavement of within 7m on a horizontal curve of radius 250 m if the longest wheel base of vehicle expected on the road is 7.0 m and design speed is 70 kmph.	[8]	Understand	1
	Unit II			T
Α.	Explain the combination of stresses in rigid pavement	[4]	Understand	2
В.	Explain with neat sketch a) ESWL b) Contact Pressure	[8]	Understand	2
c.	 Design the pavement section by triaxial test method using the following data: a) Wheel load = 4100 kg b) Radius of contact area = 15 cm c) Traffic coefficient = 1.5 d) Rainfall coefficient = 0.25 e) E value of subgrade soil = 100 kb/cm² f) E value of base course material = 400 kg/cm² g) E value of 7.5 cm thick bituminous concrete surface course = 1000 kg/cm² 	[8]	Create	2
D.	Calculate the warping stresses at interior, edge and corner regions of a cement concrete pavement in 25 cm thick concrete pavement with transverse joints at 11 m interval and longitudinal joints at 3.6 m intervals. The modulus of subgrade reaction is 6.9 kg/cm ³ . Assume temperature differential for day conditions to be 0.6° C per cm slab thickness. Assume radius of loaded area as 15 cm $e = 10 \times 10^{-6} \text{ per }^{\circ}$ C $E = 3 \times 10^{5} \text{ kg/cm}^{2}$ $\mu = 0.15$	[8]	Analyze	2

